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Abstract
During development, both animals and plants exploit asymmetric cell division (ACD) to increase tissue complexity, a pro-
cess that usually generates cells dissimilar in size, morphology, and fate. Plants lack the key regulators that control ACD in
animals. Instead, plants have evolved two unique cytoskeletal structures to tackle this problem: the preprophase band
(PPB) and phragmoplast. The assembly of the PPB and phragmoplast and their contributions to division plane orientation
have been extensively studied. However, how the division plane is positioned off the cell center during asymmetric division
is poorly understood. Over the past 20 years, emerging evidence points to a critical role for polarly localized membrane
proteins in this process. Although many of these proteins are species- or cell type specific, and the molecular mechanism
underlying division asymmetry is not fully understood, common features such as morphological changes in cells, cytoskele-
tal dynamics, and nuclear positioning have been observed. In this review, we provide updates on polarity establishment
and nuclear positioning during ACD in plants. Together with previous findings about symmetrically dividing cells and the
emerging roles of developmental cues, we aim to offer evolutionary insight into a common framework for asymmetric
division-site determination and highlight directions for future work.

Introduction
Asymmetric cell division (ACD) is a universal mechanism
that creates cell diversity in both animals and plants. While
animals employ a conserved molecular repertoire to execute
ACD (Knoblich, 2010; Sunchu and Cabernard, 2020), how
plants have evolved to accomplish this task at the molecular
and cellular levels remains enigmatic. To date, only a few
plant model systems have been thoroughly investigated.
Interestingly, plant-specific polarity proteins including
BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE

(BASL; Dong et al., 2009), BREVIS RADIX family (BRXf) pro-
teins (Rowe et al., 2019), POLAR LOCALIZATION DURING
ASYMMETRIC DIVISION AND REDISTRIBUTION (POLAR;
Pillitteri et al., 2011), the leucine-rich repeat-receptor-like
kinases PANGLOSS 1 (PAN1) and PAN2 (Cartwright et al.,
2009; Humphries et al., 2011; Zhang et al., 2012), and RHO
OF PLANTS (ROP; Humphries et al., 2011; Yi and Goshima,
2020) have been identified as master regulators of ACD,
which resemble the PARTITIONING DEFECTIVE (Par) pro-
teins in animals. Among these, PAN1 and PAN2 are grass
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specific (Chen et al., 2017). BRXf, POLAR, and BASL are pre-
sent in a complex (Houbaert et al., 2018; Rowe et al., 2019;
Guo et al., 2021a); however, phylogenetic analyses indicated
that they have evolved separately with the emergence of
BASL in eudicot species (Nir et al., 2022; Ramalho et al.,
2022). ROPs are plant-specific small GTPases homologous to
the Cdc42/Rho/Rac superfamily in yeasts and animals. These
highly conserved proteins play fundamental roles in cell po-
larity and ACD in various species ranging from bryophytes
to flowering plants (Humphries et al., 2011; Feiguelman
et al., 2018; Yi and Goshima, 2020).

It appears that plants have evolved different molecular
pathways to initiate ACD. However, an increasing number
of studies have revealed some common features. For in-
stance, in well-studied plant systems such as stomatal line-
age cells (Dong et al., 2009; Muroyama et al., 2020), zygotes
(Kimata et al., 2016), and lateral root founder cells (De Rybel
et al., 2010; Vilches Barro et al., 2019) in Arabidopsis thaliana
and protonema cells and gametophore initials in mosses
(Kosetsu et al., 2017; Yi and Goshima, 2020), all asymmetri-
cally dividing cells undergo a series of subcellular events, in-
cluding cell polarization, membrane expansion, nuclear
migration or positioning, and asymmetric division.
Functionally analogous molecules such as polarity proteins
and cytoskeletal elements are also involved in ACD. It is
tempting to speculate that plants have taken similar strate-
gies to fulfill the need for ACD and development during
evolution. In this review, we discuss how a division site is de-
termined during ACD in plants with a focus on cell polarity
and nuclear positioning. By providing recent updates in
model plant cells and combining findings about symmetric
divisions, we hope to offer evolutionary insight into the cel-
lular mechanisms of ACD and to highlight questions that re-
quire further investigation toward obtaining a full picture of
a conserved theme for the establishment of ACD in plants.

The preprophase band and cortical division
zone
Unlike animals, plants use two unique cytoskeletal struc-
tures, the preprophase band (PPB) and phragmoplast, to
carry out cell division (Smertenko et al., 2017). As the PPB
forms underneath the plasma membrane before nuclear en-
velope breakdown and marks the future division site, it has
been suggested that the PPB is the key determinant of divi-
sion site selection (Traas et al., 1995; Camilleri et al., 2002;
Azimzadeh et al., 2008; Spinner et al., 2010; De Smet and
Beeckman, 2011; Rasmussen et al., 2011). The formation and
function of the PPB have been extensively studied in sym-
metrically dividing cells. However, few studies have focused
on the relevant mechanisms during asymmetric division. In
this section, we briefly discuss factors that govern division
plane orientation based on the knowledge mostly from sym-
metric divisions and highlight evolutionarily conserved com-
ponents that may also contribute to asymmetric division in
a broader context. For more mechanistic details on division
plane selection, the readers are referred to the following

excellent reviews (Lipka et al., 2015; Rasmussen and
Bellinger, 2018; Livanos and Muller, 2019).

As the cell cycle proceeds, the PPB forms at preprophase
and disappears at prometaphase. The positional information
of the PPB is transmitted to subsequently recruited mole-
cules including PHRAGMOPLAST ORIENTING KINESINs
(POKs; Lipka et al., 2014), RAN GTPASE ACTIVATING
PROTEIN 1 (RanGAP1) (Xu et al., 2008), PLECKSTRIN
HOMOLOGY GTPASE ACTIVATING PROTEINs (PHGAPs;
Stockle et al., 2016), and TANGLED (TAN; Walker et al.,
2007; Figure 1). These proteins define/specify a new domain
termed the cortical division zone (CDZ). During cytokinesis,
the CDZ guides phragmoplast expansion and eventually
fuses with the expanding cell plate (Smertenko et al., 2017;
Livanos and Muller, 2019). This mechanism is known as
phragmoplast guidance.

A few observations suggest that the PPB is not essential
for division site determination. First, many types of plant
cells divide without forming a PPB, such as starchy endo-
sperm cells (Brown et al., 1994; Olsen, 2001), meiocytes
(Brown and Lemmon, 1991), and microspores (Heslop-
Harrison, 1968; Otegui and Staehelin, 2000) in flowering
plants, and protonema cells (Schmiedel and Schnepf, 1979;
Schmiedel et al., 1981) and gametophore initials in mosses
(Kosetsu et al., 2017). Second, in PPB-depleted mutants, cell
division exhibits only mild detects in orientation (Schaefer
et al., 2017). Consequently, plant development is largely nor-
mal in these mutants (Traas et al., 1995; Schaefer et al.,
2017).

In contrast, the CDZ markers do appear in naturally non-
PPB-forming cells and PPB-depleted mutant cells (Miki et al.,
2014; Schaefer et al., 2017; Yi and Goshima, 2020; Figure 2).
In addition, the loss of key components required for CDZ
formation, such as the kinesins POKs, causes drastic defects
in development and division orientation (Muller et al.,
2006). These findings suggest that phragmoplast guidance is
a widely conserved mechanism in land plants and that the
PPB is a promoting factor. In agreement with this notion,
the phragmoplast emerged earlier than the PPB during evo-
lution (Buschmann and Zachgo, 2016). Moreover, all key
components of the CDZ (POKs, RanGAP1, PHGAPs, and
TAN) are present in basal land plants (confirmed by BLAST
analysis of Arabidopsis gene sequences against the moss
Physcomitrium patens and liverwort Marchantia polymorpha
genomes), whereas some PPB components, such as TON1
RECRUITING MOTIF proteins, are specific to seed plants
(based on phylogenetic analyses from the TAIR database
www.arabidopsis.org and the Ensembl Plants database www.
plants.ensembl.org).

As the maintenance of TAN, RanGAP1, and PHGAP1/2 at
the CDZ depends on POKs, these kinesins appear to be cen-
tral for division plane orientation (Walker et al., 2007; Xu
et al., 2008; Stockle et al., 2016). How CDZ components are
recruited to the cell cortex in the absence of a PPB remains
unclear. Presumably, cell polarity and nuclear positioning
may directly or indirectly influence the localization of CDZ
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components and/or act cooperatively with them to specify
the division plane during both symmetric and asymmetric
divisions (see below). Connections between early regulators
of ACD and CDZ components should exist. Identifying such
connections would be of great interest for understanding di-
vision site determination during ACD in plants.

Nuclear positioning and its relationship with
the PPB and CDZ
The determination of a division site in animals is largely con-
trolled by spindle positioning (D’Avino et al., 2015;
Kiyomitsu, 2019). To date, no compelling evidence suggests
the existence of a similar mechanism in plants (Abrash and
Bergmann, 2009; Yamada and Goshima, 2017), although the
mitotic spindle has to be properly anchored and oriented
(Ambrose and Cyr, 2008; Kosetsu et al., 2017; Leong et al.,
2020; Kozgunova et al., 2021). Mitotic spindles in plants usu-
ally assemble at a place where the nucleus is located.
Therefore, the approximate site of the division plane is de-
termined by nuclear position. This is more obvious in asym-
metrically dividing cells, whose division is preceded by
directed nuclear migration or positioning (Kimata et al.,
2016; Vilches Barro et al., 2019; Yi and Goshima, 2020).
Nuclear positioning may affect division site determination
during both symmetric and asymmetric divisions. However,
the contribution of nuclear positioning has been only stud-
ied in a limited number of cell types due to the lack of a
conspicuous repositioning phase during most symmetric
divisions.

Early studies in symmetrically dividing cells point to coor-
dination between nuclear positioning and PPB formation. A
number of findings suggest that nuclear positioning is

instrumental for the assembly of the PPB. First, the nucleus
itself is an microtubule (MT)-organizing center (MTOC),
and nucleus-associated MTs are reoriented transversely in
elongated cells to participate in PPB formation (Wick and
Duniec, 1983; Flanders et al., 1990; Stoppin et al., 1994).
Second, the displacement of the nucleus by centrifugation is
sufficient to induce PPB formation (Murata and Wada,
1991). Third, the absence of a PPB induced by drug treat-
ment does not affect nuclear migration (Katsuta et al.,
1990). Fourth, in asymmetrically dividing cells, PPB forma-
tion is preceded by nuclear migration and occurs at a place
around the nucleus (Kimata et al., 2016). However, contra-
dictory results also indicate that the PPB could influence nu-
clear position. For example, when the PPB and nucleus are
slightly separate from each other, the nucleus could change
its morphology and move to the central region encircled by
the PPB (Granger and Cyr, 2001). Interestingly, if the nucleus
is distant from the PPB, it could not be aligned to the plane
of the PPB (Granger and Cyr, 2001). In the stomatal lineage
of cereals, under experimental conditions, the PPB could be
assembled independently of nuclear position (Galatis et al.,
1983, 1984). Therefore, nuclear positioning and PPB forma-
tion are independent to some extent. Nevertheless, the nu-
cleus could interact with the PPB to fine-tune its position
when these structures are close to each other. Indeed, MTs
connecting the nucleus and the PPB are commonly ob-
served and play important roles in nuclear positioning
(Sinnott and Bloch, 1940; Wick and Duniec, 1983; Bakhuizen
et al., 1985; Venverloo and Libbenga, 1987; Flanders et al.,
1990; Granger and Cyr, 2001; Ambrose and Cyr, 2008).

As mentioned above, the CDZ but not the PPB is a uni-
versal feature of land plants. The combinatory action of nu-
clear positioning and CDZ-dependent phragmoplast

(1) (2) (3) (4) (5)

Nuclear positioning,
PPB assembly, and

CDZ initiation

PPB disassembly
and CDZ formation

Cell plate
expansion

and orientation

Cell plate
fusion

Cytoskeleton
organization

Figure 1 The default mechanism of division site determination during symmetric cell division. In most plant cells, the nucleus occupies a large cy-
toplasmic area at the cell center. In vacuolate cells, the nucleus is off-center and has to migrate to the cell center before mitosis. This process is
mediated by MTs (gray lines) that connect the nuclear membrane and the cell cortex (1). At preprophase, a ring-shaped PPB (blue circle) is assem-
bled by the realignment of cortical MTs (2). At prometaphase, the PPB is disassembled (3). A series of MT-associated proteins that have been
recruited to the cortical ring following PPB assembly are maintained. These proteins collectively mark the CDZ (orange circle) (3). At anaphase,
with the aid of the mitotic spindle, the assembly of the cell plate (magenta disk) is initiated at the cell center. Later on, the mitotic spindle is trans-
formed into a phragmoplast. The assembling cell plate expands toward the CDZ under the guidance of the phragmoplast (4). Eventually, the cell
plate fuses with the parental cell membrane at the place labeled by the CDZ (5).
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Figure 2 Division site determination during ACD. A, In many plant cells, cell polarization is a prerequisite for initiating asymmetric division (1).
Once polarized, the cell undergoes polar cell expansion and migrates its nucleus to an off-center position (2). This process relies on polarity pro-
teins (purple) and cytoskeletal elements (gray lines). However, the responsible molecules can be different depending on the cell type. In the major-
ity of cells in flowering plants, the PPB (blue circle) is subsequently assembled around the nucleus and facilitates the establishment of the CDZ
(orange circle), which also occurs during symmetric divisions (3, upper). The CDZ then guides phragmoplast-mediated cell plate (magenta disk)
expansion (4–6, upper). In some types of cells such as moss protonema cells and gametophore initials, the PPB is not formed. Instead, the CDZ it-
self is established after nuclear envelope breakdown (3, lower). In addition, both the mitotic spindle and the CDZ can rotate, thus generating an
oriented division plane (4–6, lower). Note that CDZ assembly occurs earlier in Arabidopsis than in mosses and that the rotation of the CDZ has
only been reported in moss caulonema tip cells, whose functional significance has not been addressed (see Figure 2B). B, Dynamic establishment
of the CDZ in P. patens caulonema tip cells. Time-lapse images show the localization of PpKin12-Ie (a homolog of POKs, left) and PpREN (the ho-
molog of PHGAPs, right). Magenta arrowheads indicate the position of the CDZ. The CDZ localization of PpKin12-Ie and PpREN at metaphase or
meta/anaphase (yellow arrowheads) is overlaid with their localization at telophase (red arrowheads) for comparison. Dashed lines show the orien-
tation of the CDZ. Time is shown following nuclear envelope breakdown (0 min). Images are reproduced from Movie S6 in Miki et al. (2014) and
Video S5 in Yi and Goshima (2020). Scale bars: 10 mm.
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guidance would represent a conserved scheme to determine
a division site in plants. First, the nucleus migrates to a place
where the future division occurs. This process selects the ap-
proximate site of division as a mitotic spindle is locally as-
sembled. Notably, the nuclear position does not precisely
define where the expanding cell plate will attach to. Second,
the CDZ is established following nuclear positioning. This
structure acts as a guidance cue to lead phragmoplast ex-
pansion and cell plate assembly, thus determining the orien-
tation of the division plane (Figure 2A). A mechanism must
exist to coordinate nuclear positioning and CDZ establish-
ment during both symmetric and asymmetric divisions. In
bryophytes, CDZ assembly likely functions downstream of
nuclear positioning because POKs (e.g. kinesin-12Ie) and
PpREN (the moss homolog of PHGAP1/2 in Arabidopsis) lo-
calize to the CDZ after nuclear envelope breakdown (Miki
et al., 2014; Yi and Goshima, 2020; Figure 2B). However, all
key components required for CDZ assembly in Arabidopsis,
except PHGAP1/2, are recruited to the CDZ at prophase, in-
dicating that the CDZ functions earlier in division site selec-
tion (Walker et al., 2007; Xu et al., 2008; Lipka et al., 2014;
Stockle et al., 2016). Whether this difference has coevolved
with the emergence of the PPB remains an open question.
Nevertheless, the relationship between nuclear positioning
and CDZ assembly in different plant lineages still requires
functional investigation.

It is noteworthy that the formation of the CDZ can be a
dynamic process. In moss caulonema filament cells, the posi-
tion of PpKin12- and PpREN-labeled CDZ is slightly shifted
with the progression from metaphase to telophase, leading
to an oblique division plane (Miki et al., 2014; Yi and
Goshima, 2020; Figure 2B). Similar to the PPB, the CDZ may
possess the ability to self-organize to some extent and is not
precisely specified by signals from the nucleus. Moreover,
CDZ-mediated phragmoplast guidance can be functional
when the nucleus or mitotic spindle is slightly displaced
(Venverloo and Libbenga, 1987). The IQ67 DOMAIN pro-
teins IQD6/7/8 were recently found to control division plane
orientation in Arabidopsis (Kumari et al., 2021). IQD8 and
related proteins promote the recruitment of POKs and
PHGAPs to the CDZ via direct binding, whereas the localiza-
tion of IQD8 does not require POKs or PHGAPs. In addition,
in contrast to POKs, IQDs are required for PPB formation,
although the underlying mechanism is not yet fully under-
stood. IQDs are thought to function as a scaffold to coordi-
nate PPB assembly and CDZ establishment during
symmetric division. IQDs are evolutionarily conserved, and
many of them are associated with MTs (Abel et al., 2005;
Burstenbinder et al., 2017). Presumably, IQDs could play im-
portant roles in regulating division orientation in both PPB-
forming and PPB-free cells. For example, the positional infor-
mation from the nucleus may be transmitted to the cell
cortex via interactions between IQDs and MTs nucleated
around the nucleus. Indeed, IQD8, the major protein for di-
vision plane regulation, localized to both the nuclear enve-
lope and MTs when transiently expressed in Nicotiana

benthamiana (Burstenbinder et al., 2017; Kumari et al.,
2021); some members of the IQD family can directly bind
MTs (Wendrich et al., 2018) and MT-associated proteins
(Burstenbinder et al., 2013; Wendrich et al., 2018).

In addition to POKs and IQDs, other cortex-residing
molecules such as TAN (Smith et al., 2001; Martinez et al.,
2020), KINESIN-LIKE CALMODULIN-BINDING PROTEIN
(Buschmann et al., 2015), AUXIN-INDUCED IN ROOT
CULTURES 9 (Buschmann et al., 2006; Buschmann et al.,
2015), the 65-KDa MICROTUBULE-ASSOCIATED PROTEIN 4
(Li et al., 2017), and Myosin VIII (Wu and Bezanilla, 2014)
may also interact with the nucleus via their MT-binding abil-
ity. Although novel components of the CDZ are likely to
emerge, and the interactions between the nucleus and the
CDZ remain to be characterized, cytoskeletal dynamics, es-
pecially those of MTs, tend to play a crucial role in bridging
these two structures. Further studies are required to under-
stand how nuclear positioning and CDZ assembly coordi-
nate to control division site selection. First, it is necessary to
identify components of the CDZ that are functionally con-
served in the absence of a PPB and are recruited to the cor-
tex during early stages of mitosis. Second, how these
proteins interact with the nucleus and self-organize into a
polar domain at the cortex remains to be determined.

Nuclear positioning mechanisms
Nuclear positioning is not necessary for most symmetric
divisions. However, it must be precisely controlled in cells
undergoing physically asymmetric division as well as in some
types of symmetrically dividing cells. Undoubtedly, cytoskele-
tal elements play a fundamental role in this process. For in-
stance, in highly vacuolated cells, the premitotic nucleus
moves to the cell center with the aid of nucleus-associated
MTs (Venverloo and Libbenga, 1987; Flanders et al., 1990;
Goodbody et al., 1991; Figure 1). As cortical MTs can sense
cell geometry and tensile stress to align the division plane
(Besson and Dumais, 2011; Louveaux et al., 2016), it is plausi-
ble that nuclear positioning is mediated by forces resulting
from dynamic MT polymerization and reorganization. This
model has not been widely tested, but it may not apply to
cells that do not contain cortical MTs.

Alternatively, the active transport of premitotic nuclei
might involve cytoskeletal motors. Nuclear movement and
positioning have been observed in various interphase cells in
response to cell growth and environmental stimuli (Griffis
et al., 2014; Groves et al., 2018; Wada, 2018; Fatema et al.,
2019). In flowering plants, actin and myosin but not MTs
appear to be the predominant regulators of nuclear move-
ment (Ketelaar et al., 2002; Iwabuchi et al., 2010; Tamura
et al., 2013; Higa et al., 2014; Kawashima et al., 2014;
Nakamura et al., 2018). A similar transport mechanism could
be employed for premitotic nuclear positioning.
Interestingly, MT-dependent transport was shown to control
premitotic nuclear migration in rice (Oryza sativa) and to-
bacco (Nicotiana tabacum) BY-2 cells, suggesting that nu-
clear positioning may require cell type- or organism-specific
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mechanisms (Frey et al., 2010). Indeed, during formative divi-
sion or asymmetric division, nuclear migration is governed
by the differential action of actin filaments (F-actins) and
MTs, depending on the cell type and organism (see below).
Intriguingly, despite their differences, studies of various plant
cells have now identified polarity proteins as upstream regu-
lators of cytoskeleton-dependent nuclear migration
(Figure 2A). The polarity–cytoskeleton–nuclear positioning
pathway appears to be functionally conserved during plant
ACD. Our knowledge of this model is at its early stages. In
the following section, we discuss studies in model systems
that may support the existence of this pathway (Table 1).

Zygotic and embryonic divisions in
Arabidopsis
Divisions at the early stage of embryonic development in
Arabidopsis are mostly asymmetric and invariant (Armenta-
Medina and Gillmor, 2019). After fertilization, the zygote
undergoes rapid polar growth and a typical asymmetric divi-
sion to generate a small apical cell and a large basal cell,
which will develop into the proembryo and suspensor, re-
spectively (Mansfield and Briarty, 1991; Figure 3A). Various
studies have identified regulatory factors controlling polarity
establishment and maintenance, division asymmetry, and
cell fate determination in the zygote, such as the WRKY
DNA-BINDING PROTEIN 2 transcription factor (Ueda et al.,
2011, 2017), the membrane receptors SHORT SUSPENSOR
and ZYGOTIC ARREST 1 (Bayer et al., 2009; Yu et al., 2016),
the YODA (YDA)/MITOGEN-ACTIVATED PROTEIN KINASE
(MAPK) kinase cascade (Lukowitz et al., 2004; Zhang et al.,
2017), and auxin signaling (Friml et al., 2003). However, the
underlying cellular mechanism for the selection of an asym-
metric division site has only recently been discovered.

Several years ago, using in vitro-cultured embryos and
time-lapse imaging, Kimata et al. revealed the differential
roles of cytoskeletal elements in coordinating cell elongation
and asymmetric division (Gooh et al., 2015; Kimata et al.,
2016). The disruption of MT polymerization impedes polar
cell growth but not division asymmetry. In contrast, the per-
turbation of F-actins markedly inhibits nuclear migration
and has relatively mild effects on cell elongation.
Accordingly, MTs reorganize into a transverse subapical ring
during the elongation phase; F-actins form an apical cap
and appear as longitudinal arrays in the cytoplasm, poten-
tially favoring actin-dependent transport of the nucleus. The
formation of the PPB is preceded by nuclear migration, indi-
cating that nuclear positioning plays a pivotal role in deter-
mining division asymmetry. How nuclear migration is
controlled mechanistically and how it is linked to the devel-
opmental context are not clear yet. Conceivably, cell polarity
may affect nuclear positioning by regulating actin reorgani-
zation and/or actin-dependent transport. In support of this
notion, ROP3 was shown to control zygotic asymmetric divi-
sion (Huang et al., 2014). ROPs are versatile regulators in-
volved in actin polymerization, MT dynamics, cell
morphogenesis, and polar cell growth (Feiguelman et al.,

2018). Therefore, ROPs may target the actin network to reg-
ulate nuclear positioning and zygotic division in response to
developmental cues. Moreover, polar growth and nuclear
migration are intimately coupled. Both processes could be
subject to ROP regulation. Another promising candidate for
the control of nuclear transport is myosin. Myosins are
actin-associated motors (Nebenfuhr and Dixit, 2018).
Among the 17 members in Arabidopsis, MyoXI-i is critical
for interphase nuclear positioning (Avisar et al., 2009;
Tamura et al., 2013); nuclear migration in sperm before fer-
tilization also requires uncharacterized myosin members
(Kawashima et al., 2014). Studying the function of myosin
during zygotic division will add another dimension to our
understanding of the mechanisms of premitotic nuclear
positioning.

MTs and actin are also required for asymmetric divisions
at later stages of embryo development, although a nuclear
positioning phase is not obvious (Vaddepalli et al., 2021). In
a recent study, IQD6 and its close homologs IQD7 and
IQD8 were shown to regulate division orientation, as is also
observed during symmetric division (Kumari et al., 2021;
Vaddepalli et al., 2021). Intriguingly, the determination of di-
vision plane orientation is attributable to MT- and actin-
dependent cell shape but not to nuclear positioning or the
polarity axis (Vaddepalli et al., 2021). This phenomenon is
thought to be due to the difference in cell morphology be-
tween the zygote and embryo (large and elongated versus
small and polyhedral). However, using 3D computational
modeling, Moukhtar et al. found that the nucleus could
constrain surface minimization to modulate the default geo-
metric rules for division plane selection, pointing to a critical
role for nuclear positioning (Moukhtar et al., 2019).
Regardless of this controversy, auxin signaling components
such as the auxin receptor TRANSPORT INHIBITOR
RESPONSE1/AUXIN-SIGNALING F-BOX (Prigge et al., 2020),
Aux/IAA protein IAA12/BODENLOS (Yoshida et al., 2014;
Vaddepalli et al., 2021), AUXIN RESPONSE FACTOR ARF5/
MONOPTEROS (Schlereth et al., 2010; Moller et al., 2017),
and the auxin efflux carrier PIN-FORMED (PIN; Friml et al.,
2003; Blilou et al., 2005) play profound roles in division ori-
entation and embryonic patterning. The expression of polar-
ity proteins (e.g. ROP3, ROP9, and RopGEF5) and
cytoskeleton-associated molecules (e.g. IQD6) is positively
regulated by auxin signaling (Huang et al., 2014; Vaddepalli
et al., 2021). Therefore, auxin is linked to division plane se-
lection via its transcriptional regulatory activity.

In addition to the cytoskeleton, the asymmetric distribu-
tion of organelles could affect nuclear positioning and divi-
sion asymmetry. The polarization of the zygote is
accompanied by the expansion of a large vacuole at the
basal cytoplasmic region (Mansfield and Briarty, 1991).
Pharmacological and genetic disruption of vacuole morphol-
ogy and distribution blocks nuclear positioning and inhibits
division asymmetry (Kimata et al., 2019; Matsumoto et al.,
2021). Similar to nuclear migration, the formation of a tubu-
lar vacuole around the nucleus and its asymmetric
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distribution are actin-dependent (Kimata et al., 2019).
Hence, zygotic nuclear positioning requires pathways involv-
ing signaling cues, cell polarity, cell morphology, the cyto-
skeleton, and intracellular organelle interactions.

Founder cell division during lateral root
initiation
The development of lateral roots in Arabidopsis begins with
the specification of pairs of founder cells derived from xylem
pole pericycle cells (Cavallari et al., 2021). The two abutting
elongated founder cells undergo physically asymmetric divi-
sions, producing two adjacent small central cells and two
large flanking cells (De Rybel et al., 2010; Figure 3B). Before
division, the central domain of each founder cell expands ra-
dially to a greater extent than the peripheral domain
(Vilches Barro et al., 2019). Meanwhile, the nuclei migrate
toward the common cell wall and undergo an asymmetric
division. Cell-autonomous and nonautonomous auxin mod-
ules are critical for founder cell specification and asymmetric
division as well as lateral root initiation at later stages of
root development (Dubrovsky et al., 2008; De Rybel et al.,
2010; Goh et al., 2012; Marhavy et al., 2013). GOLVEN (GLV)
peptide signaling also plays an important role in founder
cell specification and asymmetric division (Fernandez et al.,
2015, 2020; Cavallari et al., 2021). However, how division
asymmetry is achieved at the mechanistic level is not well
understood.

Asymmetric cell expansion is a prominent cellular event
that occurs concurrently with nuclear migration. Using
time-lapse imaging, Vilches Barro et al. showed that MTs are
arranged along the long axis before the first asymmetric divi-
sion of pericycle founder cells and become isotropic in the
central domain and anisotropic in the peripheral domain af-
ter division, indicating that MTs are responsible for asym-
metric expansion (Vilches Barro et al., 2019). Accordingly,
the depolymerization and stabilization of MTs lead to glob-
ally enhanced and decreased cell expansion, respectively. MT
organization is defective when auxin signaling is perturbed,
suggesting that the auxin pathway targets MTs to induce
polarity establishment. Similarly, the disruption of F-actin
stability increases the level of founder cell expansion and
induces defects in polar nuclear migration and division
asymmetry. It appears that MTs and actin are differentially
involved in founder cell morphology and nuclear dynamics,
which is similar to that during zygotic division (Kimata
et al., 2016). However, the exact relationship between cell
growth and nuclear positioning has not been fully clarified.

Founder cell expansion and polarization are strongly influ-
enced by cell wall properties. For example, inhibiting cellu-
lose synthesis increases cell expansion and MT isotropy
(Vilches Barro et al., 2019). The division capacity of founder
cells is restrained by the overlying endodermis (Vermeer
et al., 2014; Marhavy et al., 2016). A recent study showed
that the cell wall remodeling enzyme EXPANSIN A1, an
auxin-responsive factor, is responsible for founder cell

A

C

B

Zygote

MMC

Founder cell

Polarity proteins PPB

Figure 3 Cell models for studying ACD in Arabidopsis. A, Zygotic division. After fertilization, the zygote exhibits rapid polar growth. Concurrently,
its nucleus migrates toward the apical cytoplasm (green arrow) and an expanding vacuole occupies the basal cytoplasm. The PPB is then assem-
bled around the nucleus (blue circle). As the position of the nucleus is asymmetric, the subsequent division produces a small apical cell and a large
basal cell, which will develop into the proembryo and suspensor, respectively. B, Founder cell division. Lateral roots are initiated by the division of
pairs of founder cells. Before division, two abutting founder cells expand radially. The expansion near the common wall (central domain) is faster
than that at the periphery domain. During cell expansion, their nuclei migrate toward the common wall (green arrows) and divide asymmetrically
to produce two central cells and two peripheral cells that differ significantly in shape. C, The division of MMCs. The premitotic MMC is polarized
with the BASL-associated protein complex on the membrane (purple). This polarity crescent instructs the opposing movement of the nucleus
(green arrow). The PPB is formed around the nucleus (blue line) and marks the asymmetric division site. The polarity crescent is inherited by the
large daughter cell. After division, the nucleus in the large daughter cell migrates toward the polarity axis. This process is also controlled by the po-
larity signal.
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expansion and asymmetric division (Ramakrishna et al.,
2019). Additionally, vesicle trafficking-mediated cell wall
remodeling is closely associated with lateral root emergence
and patterning, although how it influences cell expansion
and asymmetric division remains elusive (Wachsman et al.,
2020). At stage II of lateral root development, lateral root
initial cells undergo periclinal divisions, a phenomenon that
is strongly against the default geometric rules for division
plane orientation. Such divisions are also preceded by signifi-
cant lateral growth (Schutz et al., 2021). These findings to-
gether suggest that signaling cues must play a role in cell
shape regulation and division plane selection. Although the
direct effectors remain to be characterized, polarity proteins
might be involved in these processes. For example, ROP6
displays polar membrane localization in the lateral root
founder cells and initials (Poraty-Gavra et al., 2013).
Dominant-negative and constitutively active forms of ROP2
could inhibit and promote lateral root initiation, respectively
(Li et al., 2001). ROPs may modulate cytoskeletal dynamics
as well as cell wall remodeling (as revealed in other develop-
mental processes) to initiate polarization and/or to regulate
nuclear positioning (Feiguelman et al., 2018). Moreover, the
expression of ROP6 is controlled by auxin (Poraty-Gavra
et al., 2013). Therefore, lateral root founder cell division
employs hormone signaling, polarity regulators, cytoskele-
tons, and nuclear migration, similar to cell division in the zy-
gote; however, tissue-specific mechanisms, such as cell wall
remodeling, also play fundamental roles in this process.

The division of stomatal lineage cells
In Arabidopsis, meristemoid mother cells (MMCs) divide
asymmetrically to produce a larger stomatal lineage ground
cell (SLGC) and a smaller meristemoid (Guo et al., 2021a;
Figure 3C). Meristemoids can either maintain an MMC fate
or directly differentiate into guard mother cells (GMCs).
Similarly, the SLGCs can differentiate into pavement cells or
undergo asymmetric divisions to generate a smaller meriste-
moid distant from the previous one, thus enabling the
proper spacing of stomata. The division site of MMCs and
SLGCs is predictable and is marked by the position of the
PPB and nucleus (Zhao and Sack, 1999; Lucas et al., 2006).

The initiation of asymmetric division of stomatal lineage
cells depends on polarly localized proteins on the plasma
membrane. An increasing number of components of the po-
larity module have been identified, including BASL, POLAR,
BRXf, BRASSINOSTEROID-INSENSITIVE 2 kinase, YDA/
MAPK kinases, MAPK SUBSTRATES IN THE STOMATAL
LINEAGE proteins, and BSU1-LIKE (BSL) family phosphatases
(Dong et al., 2009; Pillitteri et al., 2011; Zhang et al., 2015;
Houbaert et al., 2018; Rowe et al., 2019; Xue et al., 2020;
Guo et al., 2021b). These factors undergo dynamic interac-
tions during amplifying and spacing divisions and target the
fate determinant SPEECHLESS (SPCH) to control cell differ-
entiation (Zhang et al., 2015; Guo et al., 2021a). The disrup-
tion of polarity establishment also induces a reduced
difference in daughter cell size, suggesting a tight correlation

between division asymmetry and fate determination (Dong
et al., 2009; Rowe et al., 2019). How does the polarity mod-
ule control division site selection? Before division, the nu-
cleus is positioned far from the polarity crescent, indicating
that polarity proteins have a negative effect on division
plane selection (Zhao and Sack, 1999). A recent study
showed that MTs are necessary for propelling the premitotic
nucleus toward the opposing direction (Muroyama et al.,
2020). Interestingly, the nucleus in the large daughter cell
moves toward the inherited polarity crescent after division,
which also depends on the same polarity module. What
causes the two opposite responses are unknown, but actin
and Myosin-Xi rather than MTs are required for postmitotic
nuclear migration (Muroyama et al., 2020). Presumably, MT-
associated motors are responsible for premitotic nuclear
migration.

Besides nuclear positioning, PPB assembly is thought to be
controlled by the BASL/YDA/MAPK module (Shao and
Dong, 2016). MICROTUBULE ORGANIZATION 1, an MT-
binding protein required for PPB assembly, contains canoni-
cal MAPK phosphorylation sites and could be a direct target
of YDA/MAPK (Kawamura et al., 2006). Other PPB-
associated factors might also be regulated by phosphoryla-
tion, such as CLIP-ASSOCIATING PROTEIN and
MICROTUBULE END BINDING PROTEIN 1c (Vavrdova
et al., 2019). The BASL/YDA/MAPK module is thought to
create a gradient of posttranslationally modified proteins to
influence PPB positioning (Shao and Dong, 2016). In support
of this view, loss-of-function of the PPB-localized kinesin
ARMADILLO REPEAT KINESIN results in phenotypes similar
to those observed in the Arabidopsis basl mutants, implying
a functional interaction between the polarity module and
PPB (Malcos and Cyr, 2011; Lau et al., 2014).

The BSL phosphatase family was recently identified as a
component of the polarity complex (Guo et al., 2021b).
BSL1 is recruited to the polarity crescent later than BASL,
and its appearance is closely correlated with PPB assembly.
A checkpoint is thought to enable spatiotemporally con-
trolled PPB assembly and localization. How the polarity
complex controls or coordinates PPB formation as well as
nuclear positioning is still unknown. Additionally, BASL may
regulate cell growth to indirectly affect division site selection.
The ectopic expression of BASL is sufficient to establish a
polarizing domain to induce cell outgrowth, which is remi-
niscent of the function of ROP GTPases (Dong et al., 2009).
BASL-induced cell growth is abrogated in ROP mutants, fur-
ther supporting genetic interactions between BASL and
ROPs. Whether the BASL complex plays additional roles in
regulating cell morphology to control stomatal division
remains obscure. Nevertheless, the membrane fraction of
BASL, rather than its nuclear localization, is necessary and
sufficient to establish division asymmetry (Dong et al., 2009).

In the stomatal lineage, hormone signaling also plays a
crucial role in oriented cell division (Lee and Bergmann,
2019; Herrmann and Torii, 2021). One prominent pathway
involves the EPIDERMAL PATTERNING FACTOR (EPF)
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peptides and their membrane receptors (Geisler et al., 2000;
Nadeau and Sack, 2002; Shpak et al., 2005; Hara et al., 2007;
Hunt and Gray, 2009; Lee et al., 2012). These factors are
linked to the division regulators by interacting with the
YDA/MAPK cascade (Meng et al., 2015). The auxin and cy-
tokinin pathways were recently shown to regulate orientated
cell division. Through analyzing the targets of SPCH, cytoki-
nin signaling was shown to promote asymmetric division
and form a feedback loop with SPCH (Vaten et al., 2018).
Auxin may also promote asymmetric division. Using auxin
reporters, Le et al. found a high level of auxin activity in
meristemoids primed for asymmetric division and a signifi-
cantly lower level in GMCs, suggesting that auxin positively
regulates stemness but inhibits differentiation (Le et al.,
2014). This notion is supported by two other studies show-
ing negative effects of auxin on stomatal development
(Balcerowicz et al., 2014; Zhang et al., 2014). How the devel-
opmental signals are intertwined with the polarity pathway
to control division asymmetry remains unresolved. It
appears that there are complex interactions, as revealed by
genetic analyses (Dong et al., 2009; Balcerowicz et al., 2014;
Herrmann and Torii, 2021). Nevertheless, signaling cues, po-
larity regulators, and cytoskeleton-dependent nuclear posi-
tioning and PPB assembly may act successively to control
asymmetric divisions in the stomatal lineage.

The division of subsidiary mother cells in
grasses
In contrast to Arabidopsis cells, subsidiary mother cells
(SMCs) in grasses (e.g. maize [Zea mays] and wheat
[Triticum aestivum]) exhibit a unique type of asymmetric di-
vision (Facette and Smith, 2012; Apostolakos et al., 2018;
Figure 4). Before division, SMCs are polarized at a site in
contact with the neighboring GMCs (Galatis and
Apostolakos, 2004). Subsequently, their nuclei migrate to-
ward the polarized cell cortex and undergo an asymmetric
division (Panteris et al., 2006). As SMC division is highly

asymmetric, the nucleus, as well as the mitotic spindle, must
be anchored toward the GMC, which is critical for the es-
tablishment of the curved division plane (Panteris et al.,
2006). The PPB is assembled at the edge of the SMC–GMC
contact site following nuclear positioning, where it guides
cell plate expansion (Cho and Wick, 1989). Under experi-
mental conditions, the formation of a PPB can be induced
when the nucleus is not properly anchored, pointing to the
self-organizing capacity of the PPB, as mentioned earlier
(Galatis et al., 1983, 1984). Therefore, in cereal species, nu-
clear positioning, PPB formation, and spindle anchoring are
coordinated to govern the orientation of the unique division
plane. Among these processes, nuclear migration is an early
hallmark event that correlates with and predicts the asym-
metric division of SMCs. The mechanism of nuclear migra-
tion is not yet fully understood, but cytoskeletal arrays play
an indispensable role in this process. In maize, MTs are es-
sential for polar nuclear migration and anchoring, while ac-
tin influences the initial migration of the nucleus but not
the maintenance of its position (Panteris et al., 2006). In
contrast, actin rather than MTs plays a more important role
in this process in Virginia spiderwort (Tradescantia virgini-
ana; Kennard and Cleary, 1997). Other factors such as MT-
or actin-dependent motors have not been shown to be in-
volved in polar nuclear migration and anchoring.

In addition to the cytoskeleton, cell polarization acts as an
initiating factor for nuclear positioning. Before nuclear mi-
gration, SMCs are polarized, with an actin patch at the
GMC contact site (Cho and Wick, 1990). This process
depends on two polarly localized membrane receptor-like
kinases: PAN1 and PAN2 (Cartwright et al., 2009; Zhang
et al., 2012). PAN1 acts genetically downstream of PAN2
and functions to recruit ROP2/9 (Humphries et al., 2011;
Zhang et al., 2012). ROPs are small GTPases that
activate WISKOTT-ALDRICH SYNDROME PROTEIN
(WASP)/WASP FAMILY VERPROLIN HOMOLOG (WAVE)
complexes to stimulate actin polymerization (Feiguelman
et al., 2018), making them promising candidates linking

SMC

Polarity proteins and actin patch PPB

GMC

Figure 4 The division of stomatal SMCs in maize. Before division, the maize stomatal SMCs are polarized by signals from the closely associated
GMCs. The SMCs undergo local cell expansion and form a polarized domain at the GMC contact site. The polarization process depends on polar-
ity proteins (PAN1/2 and ROP2/9) and an actin patch (purple). Subsequently, their nuclei migrate toward the polarized cortex (green arrow). As
the protrusion of the SMCs is limited in space, the PPB is assembled in a curved shape (blue line). After nuclear envelope breakdown, the mitotic
spindle is anchored to the polarized cortex. Cytokinesis proceeds under the guidance of the phragmoplast and generates a lens-shaped small sub-
sidiary cell.
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polarity establishment and actin patch formation. Indeed,
the SCAR/WAVE subunits BRICK1 (BRK1) and BRK3 display
polar localization and control SMC division (Gallagher and
Smith, 2000; Frank and Smith, 2002; Frank et al., 2003;
Facette et al., 2015). However, the polar recruitment of
BRK1 precedes that of PAN1 and PAN2, suggesting that
BRK1 and BRK3 function upstream rather than downstream
of ROPs. This notion is supported by the observation that
the localization of PAN1, PAN2, and ROP2 is dependent on
BRK1 and BRK3 but not vice versa (Facette et al., 2015).
Although the SCAR/WAVE complex coimmunoprecipitates
with ROP2, and a feedback regulatory loop has been pro-
posed (Facette et al., 2015), it appears that ROPs might not
activate SCAR/WAVE to promote actin patch formation
and nuclear positioning.

Polarity signaling is not the sole factor regulating nuclear
positioning, since a significant number of nuclei can be po-
larized in the absence of an actin patch (Cartwright et al.,
2009; Humphries et al., 2011; Zhang et al., 2012; Facette
et al., 2015). The division of SMCs is preceded by local cell
expansion at the GMC contact site, which is correlated with
the modification of cell wall composition in this region
(Giannoutsou et al., 2016). Cell wall remodeling and altered
SMC morphology may provide additional signals to influ-
ence nuclear dynamics and division plane positioning.
Indeed, the failure of nuclear migration can be partly in-
duced by the decreased size of SMCs (Apostolakos et al.,
2018). The relationship between cell expansion and polarity
establishment is not fully understood. These processes might
act partly in the same pathway to control nuclear migration,
since cell protrusion and actin patch formation are closely
correlated (Panteris et al., 2007). In Arabidopsis, auxin can
stimulate cell elongation by modulating cell wall composi-
tion (Majda and Robert, 2018). Auxin signaling induces SMC
polarization and nuclear migration (Livanos et al., 2015).
Therefore, auxin signaling may play a role in regulating cell
wall remodeling and coordinating cell expansion and polar-
ity establishment. In addition, the involvement of receptor-
like kinases suggests a role for uncharacterized signals up-
stream of polarity proteins. These findings together indicate
that development signals, cell morphology, polarity, and
cytoskeletons act cooperatively to control premitotic nuclear
positioning and SMC division.

Gametophytic divisions in the moss P. patens
The bryophyte moss P. patens is an emerging basal land
plant model for studying plant cell division and pattern for-
mation (Rensing et al., 2020; de Keijzer et al., 2021;
Naramoto et al., 2022). During the lifecycle of P. patens,
many types of gametophytic cells undergo asymmetric divi-
sions (Kofuji and Hasebe, 2014; de Keijzer et al., 2021;
Figure 5). These include protonema tip cells (apical cells), ga-
metophore initials, side-branch precursor cells (subapical
cells), and shoot initials. The PPB is not formed during the
division of protonema cells and gametophore initials but is
present in the leafy shoots of P. patens (Doonan et al., 1987;

Kosetsu et al., 2017). These observations support the notion
that the PPB has evolved as an innovation in complex tis-
sues. Accordingly, the division pattern in leafy shoots resem-
bles those of meristems in seed plants and involves
conserved signaling pathways (Cammarata et al., 2019;
Veron et al., 2021).

Moss protonemata consist of two types of cells, the chlor-
onema, and caulonema cells, whose tip cells undergo polar-
ized growth (Menand et al., 2007; Vidali and Bezanilla, 2012).
Similar to pollen tubes and root hairs in flowering plants, tip
growth in these cells is predominantly controlled by polar F-
actins and ROP GTPases (Doonan et al., 1988; Finka et al.,
2007; Vidali and Bezanilla, 2012; Burkart et al., 2015; Wu and
Bezanilla, 2018; Cheng et al., 2020; Yi and Goshima, 2020).
As tip cells elongate, their nuclei are maintained at the cell
center by concomitant migration along the growth direction
(Pressel et al., 2008). Meanwhile, a large vacuole is associated
with the nucleus at the basal site and expands as the nu-
cleus moves forward (Pressel et al., 2008). Although nuclear
division occurs at the cell center, the division of apical cells
gives rise to daughter cells with distinct fates: one contains
more chloroplasts and continues to undergo tip growth; the
other inherits the large vacuole and becomes a subapical
cell (Figure 5A).

Whether the asymmetric location of the vacuole is impor-
tant for nuclear positioning in these cells is unknown, but
MTs are crucial for nuclear migration (Doonan et al., 1985).
In support of this notion, the minus-end-directed kinesin
KINESIN WITH CALPONIN HOMOLOGY DOMAIN (KCH) is
required to place the interphase nucleus at the cell center.
Loss of KCH results in an apical shift of the nucleus and the
division plane (Yamada and Goshima, 2018). Moreover, MTs
are predominantly oriented toward the apical end, further
supporting the involvement of MT-dependent retrograde
transport by KCH (Hiwatashi et al., 2014). The function of
KCH is evolutionarily conserved. When overexpressed in to-
bacco BY-2 cells, the rice OsKCH1, which localizes to the
leading edge of the migrating nucleus, can influence premi-
totic nuclear migration (Frey et al., 2010). The motor for an-
terograde transport of the premitotic nucleus has not been
identified. Surprisingly, the MT destabilizing factor Kinesin-
13 controls anterograde nuclear migration, suggesting that
the regulation of MT dynamics also directly or indirectly
affects nuclear positioning (Leong et al., 2020).

As cell growth is closely correlated with nuclear migration,
the growth-associated molecular machinery might interact
with structures such as the cytoskeleton to influence nuclear
positioning. The growth of apical cells requires polarized F-
actins as well as subcortical MT-actin foci (Vidali and
Bezanilla, 2012; Hiwatashi et al., 2014; Wu and Bezanilla,
2018; Yamada and Goshima, 2018). Since KCH is required
for the coalescence of MT-actin foci and can potentially
bind MTs and actin, it may directly link directed cell growth
to nuclear positioning (Yamada and Goshima, 2018).
However, the putative actin-binding domain of KCH is not
functional in either process. Instead, its C-terminus is
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essential for apical growth but is not required for nuclear
migration (Yamada and Goshima, 2018). Therefore, the two
functions of KCH are separate, but it remains enigmatic
how they are coordinated.

Subapical cells that generate side branches represent an-
other model of asymmetric division in mosses (Figure 5B).
Before division, subapical cells form a polarized bulge at the
apical site. Subsequently, the nucleus migrates into the bulge
and divides asymmetrically to generate a side-branch initial
(Schmiedel and Schnepf, 1979; Doonan et al., 1986).
Polarization of subapical cells depends on F-actins and ROP
GTPases (Quader and Schnepf, 1989; Cheng et al., 2020; Yi
and Goshima, 2020). This process is required for nuclear mi-
gration. As MT organization is altered during bulge forma-
tion, it was proposed that ROP-actin-dependent cell polarity
and morphological alteration guide nuclear migration by
regulating MT remodeling (Yi and Goshima, 2020). Indeed,
loss-of-function of ROPs affects MT dynamics in nondividing

cells (Burkart et al., 2015). Additionally, plus-end-directed
kinesins may be involved in nuclear transport, since MTs in
subapical cells are predominantly oriented toward the apical
site, similar to those in apical cells (Hiwatashi et al., 2014; Yi
and Goshima, 2020). The identification of such kinesins and
their interaction with ROP-actin will be of interest toward
understanding the mechanisms underlying premitotic nu-
clear migration. In addition to regulating cell polarization,
ROPs may affect division plane orientation in bulge-forming
subapical cells (Yi and Goshima, 2020). PpROP4, which was
observed on the assembling cell plate (Figure 2B), could po-
tentially interact with the CDZ-localized PpREN, the moss
homolog of PHGAPs, which regulate division orientation in
Arabidopsis (Stockle et al., 2016; Yi and Goshima, 2020;
Figure 5C). However, whether ROP signaling is directly in-
volved in division orientation remains unknown.

Besides side-branch initials, caulonema subapical cells also
generate gametophore initials, but at a lower frequency

B C

D

A

Gametophore
initial

Subapical cellTip cell Polarity proteins CDZ PpREN

Figure 5 Cell models for studying ACD in P. patens. A, The division of caulonema tip cells. The tip cell exhibits polarized growth under the control
of the polarity proteins ROP GTPases (purple). During growth, the tip cell nucleus moves to the cell center (green arrow) and then undergoes mi-
tosis when the cell length reaches approximately twice the length of subapical cells. The PPB is not formed. Instead, the mitotic spindle and CDZ
(orange) can rotate to generate an oblique division plane. Although the resulting daughter cells are equal in size, they show remarkable differences
in cellular contents and cell fates. B, The division of subapical cells. Subapical cells first initiate a polarized bulge at the apical end (purple), a pro-
cess that depends on ROP GTPases. During bulging, the nucleus undergoes directed migration (green arrow) and is eventually located in the bulge.
Subsequently, the cell divides asymmetrically to produce a small side-branch initial cell. After division, the nucleus in the large daughter cell moves
back to the cell center (green arrow). The PPB is absent during subapical cell division, but the CDZ (orange) is retained. C, Localization of the CDZ
component PpREN (the moss homolog of PHGAPs) in a subapical cell (yellow arrows) during cytokinesis. Scale bar: 10 mm. D, Division of gameto-
phore initials. Gametophore initials are produced in a similar manner to side-branch initials. At the early stage, these two types of cells are indistin-
guishable. With the progression of cell growth, gametophore initials gradually adopt a bulbous shape and position the nucleus at the apical
cytoplasm (green arrow). Before nuclear envelope breakdown, an MT cloud termed the gametosome forms at the apical cytoplasm. The gameto-
some merges into the subsequently assembled mitotic spindle and plays an important role in guiding the rotation of the spindle and division
plane. The PPB is absent in gametophore initials and is thought to be functionally replaced by the gametosome. After division, the nucleus in the
basal daughter cell migrates down to the basal cytoplasmic region (green arrow).
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(Brandes and Kende, 1968). Gametophore initials are indis-
tinguishable from side-branch initials at the early stage of
development. However, they gradually become bulbous and
undergo an oblique instead of transverse division, a charac-
teristic distinct from side-branch cells (Brandes and Kende,
1968; Harrison et al., 2009; Tang et al., 2020). Nuclear move-
ment before the first division of the gametophore initial is
not obvious, but the nucleus is placed around the apical cy-
toplasm, with a large vacuole occupying the basal cytoplasm
(Kosetsu et al., 2017). Upon entering mitosis, gametophore
initials assemble a tilted spindle and rotate the division
plane at an angle of �42� (Figure 5D). Interestingly, the nu-
cleus of the basal daughter cells moves to the bottom and
progressively migrates to the apical site before the second
round of asymmetric division. Subsequent divisions of the
apical and basal cells are also oblique, generating a group of
four cells, which later produce a tetrahedral shoot. The
mechanism of nuclear positioning and its contribution to di-
vision plane selection in gametophore initials have not been
investigated. However, spindle orientation and phragmoplast
guidance are important. A cytoplasmic MTOC termed the
gametosome was found to regulate the orientation of the
spindle and division plane (Kosetsu et al., 2017).
Gametosomes are functionally analogous to polar caps in
angiosperms and centrosomes in animals. Together with
other cytoplasmic MTOCs, they are thought to represent
another conserved mechanism of division plane regulation
in plants (Kosetsu et al., 2017; Yi and Goshima, 2018).

As in other plants, hormone signaling also influences divi-
sion patterns in P. patens (Thelander et al., 2018;
Cammarata et al., 2019). For example, the cytokinin pathway
is a well-known positive regulator of the induction of game-
tophore initials (Brandes and Kende, 1968; von
Schwartzenberg et al., 2016). The CLAVATA3/EMBRYO
SURROUNDING REGION-related (CLE) pathway was re-
cently shown to antagonize cytokinin signaling (Cammarata
et al., 2019, 2021). Disruption of CLE signaling results in an
increased number of gametophores, ectopic shoot apical
meristem formation, and mis-oriented divisions in gameto-
phore initials (Whitewoods et al., 2018; Cammarata et al.,
2021). Although the involvement of cytokinin in division
plane selection is unclear, the crosstalk between cytokinin
and CLE signaling implies a potential role of the cytokinin
pathway in this process. In addition to cytokinin, auxin may
also regulate asymmetric division. However, it displays oppo-
site effects on the induction of gametophore initials and
side branches (Ashton et al., 1979; Thelander et al., 2018). A
direct role of cytokinin and auxin signaling in division plane
selection and orientation has not been revealed.
Interestingly, the auxin efflux carriers exhibit polar localiza-
tion at the apical membrane, similar to ROPs, implying a po-
tential link between cell polarity and locally controlled auxin
activity (Bennett et al., 2014; Viaene et al., 2014). Consistent
with this observation, a ratiometric reporter of the primary
auxin response shows minimal auxin levels in apical cells
and other gametophytic stem cells, indicating a negative

role for auxin in regulating stemness and likely stem cell di-
vision (Thelander et al., 2019). How developmental signals
genetically interact with polarity proteins to control cell ex-
pansion, nuclear migration, and division site determination
remains an open question.

Concluding remarks
How the division site is determined is one of the most fun-
damental questions in plant cell biology (Roeder et al.,
2022). With advances in genetic manipulation, computa-
tional modeling, and live-cell imaging, our knowledge of this
process has greatly improved. Several mechanistic models,
such as geometry-based surface minimization and phragmo-
plast guidance (Livanos and Muller, 2019), have been put
forth as universal rules guiding division plane determination
(Figure 1). However, how these mechanisms are modified
for asymmetric division is poorly understood. In particular,
the underlying mechanism for asymmetric division varies
from the canonical rules and appears to be species-, cell
type-, and/or developmental context dependent (De Smet
and Beeckman, 2011; Rasmussen et al., 2011; Livanos and
Muller, 2019). Therefore, whether a broadly conserved
theme exists in plants is a thought-provoking issue.

Recent and earlier findings have revealed similarities in the
ACD process in cells with distinct shapes and fates
(Table 1). First, these cells are polarized in preparation for
asymmetric division. The polarization process exploits
membrane-localized polarity proteins, which are reminiscent
of the Par proteins in animals (Shao and Dong, 2016).
Notably, these molecules are usually responsible for the
asymmetric division of cells that generate daughter cells of
significantly different sizes. Although many of these proteins
are species-specific, conserved proteins, such as ROP
GTPases, are emerging. In animals, Cdc42, a functional ho-
molog of ROPs, also controls physically asymmetric division
(Gotta et al., 2001; Knoblich, 2010). Hence, polarity-induced
asymmetric division is an evolutionarily conserved mecha-
nism in animals and plants and exhibits similarities at both
the cellular and molecular level. Additionally, during organo-
genesis, many cells undergo asymmetric divisions without
generating significant physical asymmetry. In these cells, a
tissue-wide polarity gradient is important. Several proteins
that display globally polar localization and regulate division
pattern formation have been identified, such as PINs
(Muroyama and Bergmann, 2019), DEFECTIVE KERNEL 1
protease (Perroud et al., 2014, 2020), and SOSEKI (SOK) pro-
teins (Yoshida et al., 2019; van Dop et al., 2020; Ramalho
et al., 2022). The DIX domain of SOKs is functionally con-
served in Disheveled proteins in animals, which are core
components of the Wnt pathway that regulate tissue pat-
terning (Yoshida et al., 2019; van Dop et al., 2020). Although
novel regulators of plant division plane determination con-
tinue to emerge (Moody et al., 2018, 2021), animals and
plants seem to take similar strategies by exploiting polarity
proteins at different developmental stages.
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Second, cell polarity is closely associated with cell mor-
phology and nuclear positioning. As plant cells are encased
in rigid cell walls, the formation of a new tissue layer
strongly relies on directed cell growth and oriented cell divi-
sion. Polarity proteins are the best choice to fulfill these
requirements. How polarity controls off-center nuclear posi-
tioning is an important question for exploring physically
asymmetric division. One possibility is that polarity-guided
changes in cell shape induce a geometric signal to influence
cytoskeleton dynamics and nuclear movement. This model
applies to some cells, such as founder cells and zygotes in
Arabidopsis and moss protonema cells, but perhaps not
others. For instance, cell expansion is not observed in maize
or rice zygotes (Khanday and Sundaresan, 2021). Another
possibility is that polarity proteins directly target cytoskeletal
elements to regulate nuclear positioning and/or division ori-
entation. Although the downstream effectors, as well as the
polarity proteins themself, can be cell type-dependent, this
model explains most if not all physically asymmetric divi-
sions. Intriguingly, since the spindle positioning mechanism
in animals appears to be absent in plants, polarity-triggered
nuclear positioning could represent an alternative choice

during plant evolution (Figure 6A). If this model is correct,
cytoskeletal effectors that link polarity proteins and the nu-
cleus would be expected to play an important role in this
process. For example, polarity proteins may directly or indi-
rectly activate kinesin or myosin motors to transport the
nucleus and/or modulate MT/actin organization to facilitate
this process. Indeed, molecular pathways involving ROPs, cy-
toskeletal dynamics, and cytoskeleton-dependent intracellu-
lar trafficking are known to control plant morphogenesis
and physiology (Feiguelman et al., 2018). A similar mecha-
nism might be functional during asymmetric division.

Third, nuclear positioning, geometry and mechanical stress
sensing, and phragmoplast guidance jointly control division
site determination during plant ACD (Figure 6B). In
Arabidopsis, changes in tissue-wide mechanical forces can
influence polarization site selection and subsequent division
orientation (Bringmann and Bergmann, 2017). When
polarity-induced nuclear positioning is defective, division
asymmetry can still be generated, likely via the geometric
rules (Muroyama et al., 2020). Hence, nuclear positioning
and geometry sensing are intertwined but not strictly corre-
lated. Similarly, nuclear positioning and phragmoplast

Figure 6 A general model for ACD in plants. A, Strategies for physical ACD in animals and plants. The one-cell stage embryo in Caenorhabditis ele-
gans (left) and the subapical cell in P. patens (right) are shown as examples to compare the mechanistic models. In general, both cells are polarized
by asymmetrically localized membrane proteins (orange and blue in the C. elegans embryo; magenta in the P. patens subapical cell). These polarity
proteins act on cytoskeletal elements to position cellular structures (spindle in animals and nucleus in plants), thus determining the asymmetric
location of a division site. B, A generalized pathway for division site determination in plants. The default mechanism involves cell morphology,
PPB formation, CDZ establishment, and cell plate orientation and is employed for both symmetric and asymmetric divisions. Additional factors
are required to execute physically asymmetric division. These include extracellular signals, such as developmental cues and tissue-level mechanical
stress, and intracellular pathways comprising polarity proteins and cytoskeletons that affect nuclear positioning and/or spindle orientation.
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guidance are partly independent but coordinated, as dis-
cussed earlier. In animals, the spindle positioning and
myosin-mediated furrowing mechanisms also possess the
ability to regulate division asymmetry separately (Sunchu
and Cabernard, 2020). Both animals and plants have taken
advantage of multiple coordinated pathways for ACD. Since
plants lack the spindle displacement mechanism, they have
evolved elaborate mechanisms to position the nucleus asym-
metrically for ACD, thus enabling the generation of tissue
patterns properly and efficiently (Figure 6A). Although the
mechanisms underlying nuclear positioning differ depending
on cell type, polarity proteins and the cytoskeleton are com-
monly involved in this process. We propose that polarity–
cytoskeleton–nuclear positioning is an evolutionarily con-
served strategy for generating physical division asymmetry in
plants. This mechanism is integrated with the default rules
involving geometry sensing and phragmoplast guidance and
is modulated by developmental contexts (Figure 6B). How
the nucleus responds to signals derived from polarity pro-
teins, geometric input, and developmental cues and how
nuclear positioning is coordinated with phragmoplast guid-
ance to determine an asymmetric division plane require fur-
ther investigation. Future studies addressing these questions
in a broad range of developmental contexts and species, es-
pecially for cell divisions that do not involve cortical MTs,
will shed light on the conceptual framework for ACD in
plants.
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