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Centrosomes play various critical roles in animal cells such as

microtubule nucleation and stabilization, mitotic spindle

morphogenesis, and spindle orientation. Land plants have lost

centrosomes and yet must execute many of these functions.

Recent studies have revealed the crucial roles played by

morphologically distinct cytoplasmic microtubule-organizing

centers (MTOCs) in initiating spindle bipolarity and maintaining

spindle orientation robustness. These MTOCs resemble

centrosomes in many aspects, implying an evolutionary

divergence of MT-organizing structures in plants. However,

their functions rely on conserved nucleation and amplification

mechanisms, indicating a similarity in MT network

establishment between animals and plants. Moreover, recent

characterization of a plant-specific MT minus-end tracking

protein suggests that plants have developed functionally

equivalent modules to stabilize and organize MTs at minus

ends. These findings support the theory that plants overcome

centrosome loss by utilizing modified but substantially

conserved mechanisms to organize MT networks.
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Introduction
Microtubules (MTs) are fundamental cytoskeletal ele-

ments that play critical roles in cell morphogenesis, divi-

sion, and physiology. In live cells, MTs exhibit high dyna-

micity, such as growth, catastrophe, severing, bundling, and

transport; these processes are precisely controlled to fulfill

diverse functions [1] (Figure 1). Animal somatic cells

employ centrosomes as the major microtubule-organizing

centers (MTOCs) to arrange MTs during both interphase

and mitosis [2]. However, land plant cells assemble well-

organized interphase MTs and mitotic spindles in the
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absence of centrosomes. How MTs are organized in the

absence of centrosomes is a longstanding question.

Recent studies have revealed that many aspects of cen-

trosome functions can be achieved in plants. Further-

more, the organization of MTs in plants and animals is

similar at molecular and subcellular levels. In this review,

we focus on three processes in which centrosomes play a

major role in animals: first, plants assemble cytoplasmic

MTOCs to initiate spindle bipolarity prior to nuclear

envelope breakdown. These MTOCs are non-essential

for spindle assembly, but are important for spindle orien-

tation. Second, MT-dependent MT nucleation has been

established as the key mechanism of MT generation,

which enables generation of branched or parallel MTs

on the lattice of pre-existing MTs. This mode of nucle-

ation is suitable for rapid organization of the MT network

in the absence of predominant MTOCs. However, dif-

ferent types of nucleation have apparently been observed

in certain cell types. Third, MT dynamics at the minus

ends are regulated by minus-end tracking proteins, sug-

gesting that MT-associated proteins (MAPs) may auton-

omously regulate MT dynamics and contribute to MT

network organization.

Spindle orientation without centrosomes
One of the major roles of centrosomes is to initiate spindle

bipolarity in early mitosis. In plants, the cortical structure

preprophase band (PPB), a ring-shaped MT array encir-

cling the nucleus, has been proposed as a centrosome

analogue based on its function and the homology between

centrosomal proteins and proteins required for PPB for-

mation [3]. This possibility is supported by observations

that nuclear positioning and spindle bipolarity establish-

ment in prophase are regulated by ‘bridge MTs’, which

connect the PPB and nuclear envelope [4], and that

multipolar spindle formation is correlated with double-

PPB inducement [5]. However, mutant analyses have

thrown into question the essentiality of PPBs in division,

as both the spindle and phragmoplast appear normal in

the absence of PPBs [6–9]. Because mutant plants lacking

PPBs exhibit severe developmental defects accompanied

with interphase MT disorganization [6–10], the essenti-

ality and precise roles of PPB in mitosis remain unclear.

Recently, Schaefer et al. isolated an Arabidopsis trm
(TON1 Recruiting Motif) mutant that specifically

abolishes PPB formation without affecting interphase

MT organization [11��]. Surprisingly, trm mutant plant

growth was normal with only some loss of growth capacity

and developmental robustness. Spindle bipolarity
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Regulation of microtubule dynamics. Microtubules (MTs) are filamentous polymers consisting of a-tubulin and b-tubulin dimers. They are mostly

assembled through g-tubulin ring complex (g-TuRC)-triggered nucleation at the minus end (�) and subsequent addition of tubulin dimers at the

plus end (+). MTs are intrinsically dynamic. In cells, MTs are assembled into distinct network structures at each phase of the cell cycle, which are

essential for cell morphogenesis, division, and physiology. The arrangement of these networks is achieved by the regulation of MT dynamics, such

as g-TuRC-dependent nucleation, augmin- and g-TuRC-mediated branching nucleation on the lateral surface, minus-end and plus-end

stabilization, severing, and transport and bundling by kinesin motors. These processes are highly conserved in animals and plants, but some

factors involved evolved distinctly in animal and plant lineages. Representative regulatory molecules in plants are indicated in brackets.
establishment was not affected either; however, the ori-

entation of the spindle became variable.

In some plant cell types, such as endosperm cells in

flowering plants and caulonemal cells in the moss Physco-
mitrella patens, the PPB is never formed [12,13]. In assem-

bling spindles in plants, cytoplasmic MTs appear to be a

common key player. Cytoplasmic MTs can be polymer-

ized and anchored to less-defined subcellular structures in

the prophase stage and contribute to spindle assembly

and orientation in many cell types. In seed plants,

enriched cytoplasmic MTs are observed in pools sur-

rounding the nuclear envelope during prophase [12,14–

16], which later transform into bipolar structures termed

polar caps or pro-spindles [15,17,18] (Figure 2b). Polar cap

formation on opposite sides of the nuclear envelope is

ensured by the PPB in PPB-forming cells [4,11��,18].
Extensive data indicate that polar caps may, at least in

part, play a similar role to centrosomes in organizing

spindle bipolarity. First, MTs converge to the cap polar

region [16]. Second, g-tubulin, the major MT nucleator, is

enriched at polar caps [17]. Third, MTs exhibit plus-end-

out orientation around the poles [18]. Furthermore, anal-

ogous to animal centrosomes, polar caps are shown non-

essential for spindle assembly, but required for proper

orientation of the spindle and division plane

[11��,18,19,20��] (Figure 2a,b).
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The organization of cytoplasmic MTs into polar cap-like

structures has also been observed in bryophytes. These

structures participate in prophase spindle formation in a

similar way. In moss caulonemal cells, nucleus-associ-

ated MT enrichment is observed during prophase

[13,21]. MTs are unevenly distributed around the

nucleus, ensuring that the assembled bipolar spindles

are oriented parallel to the cell’s long axis [21]. Follow-

ing nuclear envelope breakdown, these MTs are inte-

grated into the forming spindle [21]. Recently, another

cytoplasmic MTOC structure has been characterized in

the moss gametophore. Using time-lapse imaging,

Kosetsu et al. found that the PPB is absent during

gametophore initial cell division; instead, an MT cloud,

termed the ‘gametosome’, is observed in the cytoplasm

at the apical side [20��] (Figure 2c). This MT cloud is

loosely focused with fluorescence signals extending out-

wards. During late prophase, the cloud migrates towards

the nucleus and merges into the spindle MTs following

nuclear envelope breakdown. Gametosome disruption

experiments have shown that it is required for spindle

orientation, but is non-essential for spindle assembly. Its

formation requires g-tubulin, but not actin or the TTP

(TON1-TRM-PP2A) complex, which organizes inter-

phase MTs and assembles PPB in seed plants. Based

on its function, the gametosome is similar to polar caps in

flowering plants.
www.sciencedirect.com
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Figure 2
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Centrosome-like MTOCs are involved in spindle orientation in plants. (a) Spindle orientation in the presence or absence of centrosomes in

Drosophila neuroblasts [70,71]. Spindles are consistently oriented along the polarity axis in wild-type cells, but not in centrosome-depleted cells.

Orange and green indicate asymmetric localization of membrane-associated polarity proteins, chromosomes are in light brown, and microtubules

are in dark grey. (b) Spindle orientation in the presence or absence of polar caps in Arabidopsis [11��]. The polar caps, comprised of enriched

microtubules (dark grey, indicated by arrows) surrounding the nucleus, exhibit bipolarity in late prophase. Absence of polar caps is associated

with the deviation of spindle orientation. (c) Spindle orientation in the presence or absence of gametosomes in the moss P. patens. The

gametosome is an MT cloud (dark grey, indicated by an arrow) that forms on the apical side of gametophore initial cells. In wild-type cells, the

spindle is consistently oriented at an angle of �30� along the apical-basal axis. This angle becomes variable when gametosome formation is

blocked [20��]. ‘v’ indicates a large vacuole in the basal cytoplasm.
Polar organizers (POs), a pair of centrosome-like struc-

tures located at opposite sides of the elongated nucleus

during prophase, initiate mitotic spindle formation in

liverworts [22,23�]. Enriched g-tubulin localization and

the presence of astral MTs support the suggestion that

POs are functional MTOCs [22,23�,24]. However, POs do

not contain centrioles and are not maintained during

metaphase [22]. In the liverwort Marchantia polymorpha,
both POs and PPBs arise in cells preparing for mitosis

[23�]. Interestingly, POs emerge prior to PPB formation

and extra POs are correlated with the formation of disor-

ganized PPBs [23�,25,26], suggesting that unlike polar

caps, POs may act upstream or independent of PPBs

[23�]. In the hornwort, the cytoplasmic MTOC structure,

the axial MT system (AMS), also marks spindle bipolarity

during prophase [24,25,27]. AMS is associated with a

single plastid and contains enriched g-tubulin. However,

it appears later than PPB formation, similar to polar caps

or gametosomes in PPB-containing cells [25,27].

Despite structural differences, the polar cap, gameto-

some, PO, and AMS all resemble centrosomes in terms

of initiating spindle bipolarity at early mitotic stages

(Figure 2). They are similar in many aspects: first, they

emerge or develop in prophase; second, they supply MTs

through nucleation factor-mediated polymerization;

third, they are important for spindle orientation; and

fourth, they are non-essential for spindle assembly (note:

this has not been experimentally shown for POs and
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AMS). These findings suggest that diverse cytoplasmic

MTOCs have evolved to regulate spindle orientation in

plants, which may compensate for centrosome loss. The

non-essentiality of centrosomes and these cytoplasmic

MTOCs is likely due to the existence of the conserved

chromatin-triggered self-assembly mechanism that con-

tributes to robust spindle assembly following nuclear

envelope breakdown [28,29]. However, preset bipolarity

in prophase can facilitate spindle assembly and orienta-

tion, which improves mitotic fidelity [19].

Microtubule nucleation without centrosomes
MT nucleation in both plants and animals is dependent

on the g-tubulin ring complex (g-TuRC) [30]. In the

absence of conspicuous MTOCs, the MTs in plants are

predominantly generated by an MT-dependent nucle-

ation mechanism, in which g-TuRC localizes to the

lateral surface of pre-existing MTs (mother MTs) and

nucleates polymerization of new MTs (daughter MTs)

[31]. This mechanism has been best studied in the

cortical MT networks of flowering plants where it is

thought to be the major system for MT population

amplification [32,33]. For example, in Arabidopsis hypo-

cotyl cells, only 1.4% of nucleation events are indepen-

dent of MT-association [34]. Nucleation probability sig-

nificantly increases when g-TuRC is attached to extant

MTs [34]. Because the orientation of daughter MTs is

biased at an angle of �40� or 0� from the mother MTs

[31,34,35], MT-dependent nucleation is well suited for
Current Opinion in Plant Biology 2018, 46:1–7
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generating organized parallel MTs in the cortex [33]. De
novo MT nucleation is also believed to occur, albeit

infrequently, on the plasma membrane, where g-TuRC

is likely recruited through an MT-independent mecha-

nism [32,34]. However, it is unknown how this process

occurs. A recent study has reported that occasionally, after

nucleating a 1.2 mm-long MT, g-TuRC is pushed away

towards the minus-end direction [36]. It is thought that

the plus end is transiently anchored to the plasma mem-

brane and continues to polymerize, leading to the repo-

sitioning of minus ends [36]. Subsequently, g-TuRC

disassociates from the minus ends. The depolymerization

of minus ends and resumed plus-end growth result in

treadmilling. Recently, the augmin complex, which con-

sists of eight subunits, has been shown to initiate branch-

ing nucleation of interphase cortical MTs, which is in

agreement with its role in recruiting g-TuRC and may

explain how g-TuRC is targeted to MT lattices for

nucleation [37,38]. Interestingly, the involvement of aug-

min and g-TuRC in polarized MT nucleation has also

been demonstrated in neurons, revealing a similarity in

the underlying mechanism of non-centrosomal MT net-

work organization between animals and plants [39].

During mitosis, g-TuRC is essential for the assembly of

three types of distinct MT arrays, including the polar cap/

gametosome, mitotic spindle, and phragmoplast [40].

Perturbing augmin complex function causes abnormal

spindles, reduction of MT mass, less-converged kineto-

chore fibers, and mitotic delay, accompanied with

decreased enrichment and altered localization patterns

of g-TuRC in Arabidopsis and P. patens [21,41–43]. These

findings indicate a similar role of augmin complex in

g-TuRC recruitment during mitosis in both animals

and plants [44,45], and that MT-dependent nucleation

is a general mechanism in plants utilized for the estab-

lishment of diverse organized MT networks [38]. How-

ever, g-TuRC does not always work together with aug-

min. For example, although augmin plays a dominant role

in phragmoplast MT generation, no defects in polar cap/

gametosome MT formation have been observed in P.
patens [20��]. In contrast, g-TuRC is essential for MT

formation throughout mitosis, likely because of its capa-

bility to nucleate MT in an MT-independent manner

[20��,21].

Another novel mechanism of MT nucleation was recently

identified in P. patens protonemal cells, which do not form

cortical MT arrays. MT nucleation spontaneously occurs

in the interphase cytoplasm at random locations; interest-

ingly, in �20% of cases, g-tubulin is undetectable at the

MT minus end [46]. MT-dependent branching has also

been observed; however, it occurs independent of augmin

and the branching angle is variable [46]. MT nucleation

has been studied in limited numbers of cell types; thus,

there might be other unidentified modes of MT nucle-

ation in plants.
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Microtubule minus-end stabilization without
centrosomes
Another major role of centrosomes in MT organization is

to anchor and stabilize MT minus ends during both

interphase and mitosis. In flowering plants, the plus ends

of cortical MTs exhibit dynamic instability, while the free

minus ends undergo slow depolymerization [47], indicat-

ing that the minus ends are protected. In animals, several

centrosome-independent minus-end targeting and stabi-

lizing proteins, such as CAMSAP/Patronin/Nezha family

members, have been identified [48]. However, CAM-

SAPs are not present in the genomes of plants [49].

Recently, the plant-specific MT-binding protein SPI-

RAL2 (SPR2) has been identified as an MT minus-end

targeting protein [50��,51��,52��]. In Arabidopsis, SPR2 is

predominantly localized to the minus ends and crossovers

of cortical MTs [50��,52��]. It decorates and tracks both

minus and plus ends when treadmilling occurs after

severing at crossovers. However, SPR2 only labels the

minus ends in vitro, supporting its role as a minus-end

targeting protein [52��]. Indeed, SPR2 is required for

minus-end stabilization; loss of its function causes

enhanced minus-end depolymerization and reduced sev-

ering probability at crossovers, which results in delayed

MT reorientation induced by light stimulus [50��,52��]. P.
patens SPR2 specifically localizes to and stabilizes the

minus ends in protonemal cells [51��]. It is possible that,

SPR2 is recruited to the plus ends by other plus-end

tracking proteins and plays additional roles that facilitate

MT network remodeling in flowering plants, but not in

moss protonemal cells, which form non-cortical MT net-

works. In addition, SPR2 may function in regulating MT

dynamics during mitosis because it also localizes to the

PPB, metaphase spindle, and phragmoplast [51��,53,54],
although functional analysis has not been reported.

In mammalian cells, katanin and ASPM (abnormal spin-

dle-like microcephaly-associated protein) form a complex

to regulate MT minus-end dynamics at spindle poles [55].

ASPM protects MT minus ends and promotes katanin-

mediated severing. In turn, katanin potentiates the

minus-end blocking activity of ASPM. In plants, severing

of cortical MTs at crossovers is triggered by katanin and

facilitated by SPR2 [50��,52��,56–59]. It is intriguing to

speculate that ASPM, which has not been characterized in

plants, also coordinates with katanin and SPR2 in regu-

lating MT dynamics. Whether other minus-end targeting

proteins, including Msd1/SSX2IP and microspherule

[49,60,61], play a similar role in plants, remains to be

determined.

Modeling MT self-organization
Other molecules that regulate MT network assembly

include plus-end stabilizing proteins and kinesin motors.

The cytoplasmic linker associated protein (CLASP) has

been shown to promote the assembly of an intricate
www.sciencedirect.com
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cortical MT network via stabilizing the plus ends of

transfacial MTs in Arabidopsis root cells [62]. Distinct

kinesin-14 family members, such as ATK, KCBP and

KCH, are known to transport or bundle MTs [63–65].

The nucleation factor augmin complex has been shown to

antagonize katanin-mediated severing at crossovers [66].

Together with other MAPs, these factors are believed to

control MT dynamics and facilitate MT self-organization,

therefore driving the formation or remodeling of MT

patterns in the absence of MTOCs [67]. However, how

this process occurs remains mysterious. In recent years,

advanced approaches including quantitative analysis of

MT dynamics and computational modeling have come

into focus, which enable deep investigations of synergis-

tic effects on MT dynamics and network modeling. A

recent study, for example, shows that katanin-mediated

selective severing of MTs at crossovers, but not at random

locations, promotes alignment of cortical MTs, which

supports in vivo observations [57–59]. This process is

aided by the minus-end stabilizing factor SPR2 as

revealed by quantitative imaging in vivo and biochemical

assays in vitro [50��,52��]. By simulating MT dynamics in
silico, two studies indicate that the orientation of cortical

MT arrays is highly influenced by the cell shape [68,69].

As many factors such as nucleation site, plus- and minus-

end stability, MT movement, and MT-MT interactions

are regulated by specific sets of proteins in vivo, a combi-

nation of quantitative imaging and modeling in given

genetic backgrounds is now used to investigate their

actions on MT dynamics [50��,62,66].

Concluding remarks
Over the past several years, studies using multiple model

plant species have improved our understanding of how

MTs are nucleated, stabilized, and organized in the

absence of centrosomes in land plants. Notably, non-

centrosomal MTOCs, gametosomes, and polar caps have

been identified and/or experimentally characterized as

the functional analogues of centrosomes. At a molecular

level, conserved proteins, such as augmin or g-TuRC, act

on MTs via a mechanism common in plants and animals,

whereas minus-end stabilizers (CAMSAP and SPR2)

have uniquely evolved in each kingdom. Moreover,

experimental analyses and computational modeling have

revealed the critical role of self-organization in shaping

MT networks in plants. Further studies addressing the

roles of conserved MT-interacting molecules in the

framework of a quantitative self-organization model will

greatly advance our mechanistic understanding of MT

organization in various plant cell types.
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